

Department of Civil, Environmental, and Architectural Engineering http://civil.colorado.edu

Role of Centrifuge Modeling in the Design of an Evapotranspirative Cover for a Hazardous Waste Landfill

by

Jorge G. Zornberg, Ph.D., P.E. University of Colorado at Boulder

Motivation for Centrifuge Modeling of Unsaturated Flow

- Favors a systematic control of variables
- Facilitates data collection for validation of unsaturated flow numerical simulations
- Allows critical combination of weather and soil conditions
- Allows prediction of long-term infiltration response in a reduced time frame
- Allows before-the-event, Class A numerical simulations of infiltration problems

Oll Superfund Landfill

OII Superfund Landfill

- 190 acres site in southern California.
- Closure under the USEPA Superfund program
- Intermediate slopes between benches up to 100 ft high
- North Slopes as steep as 1.3H:1V
- South Slopes stabilized with a reinforced toe buttress
- Thickness of existing cover soil ranges from 1 to 15 ft
- Exposed to the high seismic activity of the Los Angeles area

OII Superfund Landfill

- Site was originally a sand and gravel quarry
- •1948 Waste disposal initiated
- •1954 Disposal of liquids in native soil
- •1964 California buys 28 acres for Pomona Freeway (170,000 cu yards of waste in ROW)
- •1976 300,000,000 gallons liquid waste permitted
- •1978 Gas control initiated. Daily cover required
- •1983 Liquid disposal ceased
- •1984 Waste disposal ceased
- •1997 Final cover design completed
- •2000 Construction of cover system completed

OII Superfund Landfill

Factors considered in the cover selection and design:

- Percolation
- Stability
- Constructibility
- Refuse deformation response
- Erosion control
- Gas migration control

OII is the first Superfund site with an EPA-approved Evapotranspirative cover.

Phases in the Study

- Evaluation of the performance of a Baseline ET cover
- Equivalence demonstration of generic cover
- Sensitivity evaluation of parameters governing the ET cover design
- Design
- Equivalence demonstration using soilspecific hydraulic properties

Use of centrifuge testing for direct determination of k-function

$$\Phi_{m} = -\frac{1}{2}\omega^{2}(r_{0} - z_{m})^{2} + \frac{1}{2}\left(\frac{v_{m}}{n}\right)^{2} - \frac{\psi_{m}}{\rho_{w}}$$

$$v_m = -\frac{k(\theta)}{g} \frac{\partial \Phi_m}{\partial z_m}$$

$$v_{m} = -\frac{k(\theta)}{\rho_{w}g} \left(\rho_{w}\omega^{2} (r_{0} - z_{m}) - \frac{\partial \psi_{m}}{\partial z_{m}} \right)$$

$$k(\theta) = \frac{v_m}{\rho_w \, \omega^2 \, r}$$

Conclusions

- An ET cover design is feasible for a wide range of conditions (in southern California!)
- There is a rooting depth value beyond which percolation does not decrease significantly
- There is a cover thickness beyond which percolation does not decrease significantly
- A 1500 mm-thick ET cover with 300 mm rooting depth outperforms a prescriptive cover system
- Centrifuge modeling allowed characterization of the unsaturated properties of the engineered cover soils

Evapotranspirative Cover System for a Hazardous Waste Landfill

The design of the closure system for the OII Superfund Landfill is a good example of a project in which numerical modeling and centrifuge testing contributed to provide a safe, technically sound, and cost-effective solution.

